
AIAA-2000-4388

American Institute of Aeronautics and Astronautics

1

AN OBJECT-ORIENTED DESIGN FOR TRIM

Jason R. Neuhaus*

Unisys Corporation
NASA Langley Research Center

Mail Stop 169
Hampton, VA 23681

 Abstract*
This paper presents an Object-Oriented Design for
trimming dynamic models. By applying Object-
Oriented Programming techniques to trim, in
conjunction with an object-oriented model structure,
generic trim rules can be developed and shared between
different model types. This trim design can be used to
trim many types of models, including automobiles,
aircraft, spacecraft, and rotorcraft. Class hierarchies
and interactions between the model, trim, and trim rule
classes, as well as a general overview of Object-
Oriented Programming, are presented.

Introduction
The objective of a trim routine in simulation is to
modify the states of a vehicle until equilibrium is
reached. For aircraft, this equilibrium is typically
defined as the set of states for which all body axis
translational and angular accelerations are zero. Trim is
used to properly initialize an aircraft so that flight can
begin in any flight situation and maintain an initial set
of specified states after the simulation switches into
run/operate mode. For example, trimming on the
ground involves adjusting the height of the aircraft until
the vertical acceleration reaches zero. This is done so
the aircraft does not fall, or the landing gear are not so
compressed to cause the aircraft to jump, when the
simulation is switched into the operate mode. In
another example, the aircraft throttle(s), aileron, rudder,
and elevator can be adjusted so that the aircraft
maintains straight and level flight with no pilot inputs
after the simulation begins running.

*Aerospace/Software Engineer, Member
Copyright © 2000 by the American Institute of
Aeronautics and Astronautics, Inc. No copyright is
asserted in the United States under Title 17, U.S. Code.
The U.S. Government has a royalty-free license to
exercise all rights under the copyright claimed herein
for Governmental purposes. All other rights are
reserved by the copyright owner.

Object-Oriented Design
An Object-Oriented Design is made up of classes. Each
class encapsulates a well-defined set of tasks and
provides an interface for other classes to interact with it.
Each class contains a set of methods (functions) and
member data that define the behavior of the class.
Through encapsulation, the class becomes a black box
where only a public interface is available. This allows
classes to limit the access of methods and member data
to other classes. Methods and data can be defined as
public, protected, or private. Public methods are
accessible to any class. Protected methods only allow
derived classes to access the method. Private methods
and data are accessible only to that class.

In addition to defining their own methods, classes can
share and overload† the methods of other classes
through use of inheritance. Inheritance defines a
relationship between classes, wherein one class shares
the structure and/or behavior of another class [1]. The
parent class is the class from which inheritance is
taking place. The class that is inheriting from the
parent class is the derived class. Inheritance is often
referred to as an “is a” relationship. Figure 1 shows a
simple Unified Modeling Language (UML)[2] class
diagram depicting the relationships between a fighter
and missile classes. The AIM-9 is a derived class,
which inherits from the Missile class, the parent class.
An AIM-9 “is a” missile.

† redefine or add additional functionality

Figure 1 Simple UML Class Diagram

AIM-9AIM-7 F-16

FighterMiss i le

"is a"
relationship

"has a"
relationship

American Institute of Aeronautics and Astronautics

2

An object is a particular instance of a class. When an
object is created, it maintains all of its own data
separate from all other objects of the same type‡. In
this way, an arbitrary number of copies of a class can be
created and used without data being mixed between the
different instances of a particular class. Multiple
fighter objects can be created, where each maintains its
own private data members, such as altitude, orientation,
accelerations, etc.

Any place where a parent class is used, a derived class
can be substituted because of inheritance. For example,
if a Fighter class contains Missiles, “has a”
relationship, any class that derives from the Missile
class can be used in place of the Missile class used by
the Fighter. An AIM-9 can be used because the AIM-9
“is a” missile. The AIM-9 class contains all the
functionality of the Missile class, plus the additional
functionality specific to that particular type of missile.
The Fighter class can only call public methods that are
declared in the Missile class. Additional methods
declared in the derived classes of the Missile class
cannot be accessed, because the parent class has no
knowledge of the data and methods declared in classes
that derive from it.

Polymorphism is the overloading of a method of a
parent class in a derived class. It is used to extend or
replace functionality in the parent class. Methods that
can be overloaded are marked by the virtual keyword in
C++. The correct overloaded method to call is decided
at run time. The correct method to call is not decided at
compile time because the method to call depends on the
exact type of the object being accessed, which, because
of inheritance, may be the parent class, or any classes
that derive from it. For example, assume the Missile
class contains a public virtual method named update
that performs some function. The AIM-7 class
overloads the update method to add AIM-7 specific
code, but the AIM-9 class does not overload update. If
the fighter object has both an AIM-9 and an AIM-7
object, and calls update on both, the update method
from the Missile class will be called for the AIM-9
object, but the overloaded update method will be called
for the AIM-9 object. This occurs even though the
fighter object has no knowledge what types of missile
objects are being used.

‡ Data can be shared between instances of a class, but is
beyond the scope of this paper.

LaSRS++ Trim Classes
The following classes are used in the Langley Standard
Realtime Simulation in C++ (LaSRS++)[3] trim design
and are shown in Figure 2.

Vehicle Class
A vehicle’s states propagate through time in reaction to
external forces and moments. The forces and moments
determine the translational and angular accelerations of
the vehicle.

Aircraft Class
The Aircraft class inherits from the Vehicle class. An
aircraft is a vehicle that flies through an atmosphere.
The dynamics of the aircraft are primarily influenced by
aerodynamic, engine, and gear forces and moments.

TrimRule Class
The TrimRule class defines relationships between trim
states, errors, and gains used to trim a vehicle object.
The trim rule states and errors are based on vehicle
data. Trim states are modified based on errors and
gains, until the error is within a specified tolerance.
Each trim rule can have multiple sets of states, errors,
and gains as well as constraints. A constraint modifies
a state to a predetermined value that can be a function
of other states or a constant value.

AircraftTrimRule Class
The AircraftTrimRule class inherits from the TrimRule
class. It adds the ability to access aircraft data, in
addition to vehicle data, for use in trim states and
errors. Some of the LaSRS++ aircraft trim rules are
listed at the end of this paper.

Trim Class
The Trim class is responsible for performing all the
basic trim operations on a vehicle. These operations
include selecting trim rules, checking for rule conflicts,
setting target values for body translational and angular
accelerations, and finding a trim solution.

A trim solution is found by operating on a list of trim
rules until a solution is found or problems finding a
solution are detected. Some of the conditions checked
to determine if a solution could not be found are if the
iteration count reaches a preset maximum and no
solution is found, or an error value reaches a steady
state value that is not within the specified tolerance. In
the event of a problem locating a solution, trim states
and errors are output to aid in determining which states
had trouble trimming.

American Institute of Aeronautics and Astronautics

3

AircraftTrim Class
The AircraftTrim class inherits from the Trim class. It
selects aircraft trim rules based on the desired aircraft
initialization. Four additional states exist in the
AircraftTrim class for the purpose of overriding cockpit
values while trimming. These four data members are
aileron_at_trim, elevator_at_trim, rudder_at_trim, and
throttle_at_trim. These are used as generic inputs for
roll rate, pitch rate, yaw rate, and propulsive thrust
respectively. Each different aircraft maps the four
generic inputs to inputs specific to that aircraft.
Depending on the control system, elevator_at_trim may
drive the elevator position directly, and a separate trim
variable drives the pitch stick. This is often done for α,
Nz, and pitch rate command systems. Once the aircraft
is trimmed, any offsets in control positions can be back
driven into the hardware, displayed so the pilot can
match the inputs, or cockpit inputs can be biased based
on the trimmed values.

The AircraftTrim class does not contain any logic for
trimming. All of the trimming logic is contained in the
parent class, Trim. Through inheritance, the
AircraftTrim class can use these same methods. In this
way, the methods in Trim can be used on both vehicles
and aircraft.

Trim Algorithm

Each simulation object uses either a trim or an aircraft
trim object to trim itself, depending on the object type.
When the simulation is switched into trim mode, all the
simulation objects are trimmed in sequence. The
following sections give the basic outline of the
trimming procedure.

Rule Setup
Before the simulation objects are trimmed, each must
setup initial values and chose the rules that will be used
to trim the object. Typically, rules are chosen that zero
out all body translational and angular accelerations.
How each of the body translational and angular
accelerations are trimmed to zero is dependent on the
rules that are selected. It is sometimes desirable to trim
an acceleration term to a known non-zero value, or not
to trim it at all. Trimming to non-zero accelerations is
often done to match old data or third-party test cases.
An acceleration term might not be trimmed at all on an
aircraft without any engines; where there is no thrust to
trim out the body-x axis acceleration.

Figure 2 LaSRS++ Trim UML Class Diagram

ClassName
private member data

public method()
protected method()
private method()
<<virtual>> virtual public method()

AircraftTrim
aileron_at_trim
elevator_at_trim
rudder_at_trim
throttle_at_trim

<<virtual>> selectRules()

AircraftTrimRule

<<virtual>> calculateTrimVariables()
<<virtual>> updateStates()

Aircraft

<<virtual>> processCockpitInputs()
<<virtual>> calcAccel()1 11 -aircraft 1

Vehicle

updateSystems()
<<virtual>> vehicleEOM()
<<virtual>> processCockpitInputs()
<<virtual>> forcesMoments()
<<virtual>> calcAccel()

Trim
trim_rule_list

makeRules()
checkForConflictingRules()
solve()
analogTrim()
addRule()
<<virtual>> selectRules()
defineNameAndUnitLists()
updateValues()

TrimRule

calculateNewStates()
<<virtual>> calculateTrimVariables()
<<virtual>> updateStates()
addStateErrorAndGain()
addConstraint()

1 11

-vehicle

10..* 10..*

-trim_rule_list

1

"uses a"
relationship

"is a"
relationship

American Institute of Aeronautics and Astronautics

4

Trim Loop
After the trim rules have been setup, the solution
process begins. A trim solution is found by looping
until a solution is found, a maximum iteration count has
been reached, or the simulation exits trim mode. A
maximum iteration count is hit when one or more error
signals did not converge to zero. This usually occurs
when an error does not converge fast enough,
converges, but oscillates around zero, or reaches a
steady state value that is not within the specified
tolerance. An error that converges too slowly usually
indicates that the magnitude of a gain that was too
small. An error that converges quickly, but oscillates
around the solution, typically results when the
magnitude of a gain was too large. Warnings are
printed if trim believes it has encountered a steady state
error. A steady state error usually indicates that one or
more variables have reached a limit, for example, a
control surface deflection limit.

After the simulation object has been successfully
trimmed, the trim routine exits and the aircraft is
prepared to operate at the flight condition specified.

Methods
Figure 3 shows a UML sequence diagram[2] listing the
events that occur when trimming an aircraft. The
methods called are described below.

Trim Methods
makeRules

Before trim is initiated, the user selects the trim rules to
be used. This forms the trim_rule_list on which the
trim object will operate.

selectRules
This method is called by the makeRules method and is
responsible for determining which rules the user has
selected. Once the rules have been identified, they are
added to the trim_rule_list using the addRule method.

defineNameAndUnitLists
Once the list has been formed, the names and units of
the states, errors, and gains of all rules on the list are
gathered and stored. The names will be used to ensure
that two conflicting rules are not selected, and for
output purposes.

checkForConflictingRules
This method warns the user if two conflicting rules are
selected. Conflicting rules may prevent the vehicle

from trimming or may result in a condition where
multiple solutions exist. Two rules conflict if either the
same state is modified or the same error is monitored by
multiple rules. No preventive action is taken in the
event of a conflict. Combinations of states and errors
that do not directly conflict are not detected. For
example, selecting trim rules that specify angle of
attack, pitch angle, and flight path angle values would
cause a conflict but not be detected.

solve
Before trimming begins, the simulation object is set up
at the user-defined conditions. This is accomplished by
having each trim rule initialize its internal states to the
simulation object’s initial states. Then all the trim rules
update the states in the simulation object with their
internal states, including any constraints. This ensures
that constraints are set up properly in the first pass, ands
is accomplished through calls to the trim rule methods,
calculateTrimVariables and updateStates.

updateValues
Calling this method copies all the trim state, error, and
constraint values from the individual trim rules into the
trim object. This is done so that the data can be
recorded for diagnostic purposes.

analogTrim
This method is called by the solve method and performs
one iteration in the trimming process. Each iteration
involves updating the equations of motion, calculating
new trim variable values, and pushing the new trim
states back into the vehicle from the rules.

Aircraft Trim Methods
selectRules

The AircraftTrim selectRules method overloads the
virtual selectRules method of the Trim class. This
method adds logic for selecting aircraft trim rules based
on the user’s specifications. The aircraft trim rules
selected are added to the rule list through the addRule
method.

Trim Rule Methods
calculateTrimVariables

The calculateTrimVariables method updates the states,
errors, and gains for each trim rule selected. The states
are gathered from the current set of vehicle data. The
errors are computed based on the deviation of vehicle
data from target values. Gains are updated from the
associated trim object.

American Institute of Aeronautics and Astronautics

5

calculateNewStates
This method calculates new trim states. The following
formula is normally used to calculate the new states
based on the states, errors, and gains calculated in the
previous iteration. Other methods of calculating the
next set of trim states can be added by overloading this
method.

gainerrorstatestate ⋅+=

Using this formula to calculate new trim states results
in a very stable solution process, but may take longer to
converge on a solution than some other trim methods.

updateStates
This method updates vehicle data that correspond to the
trim states of the rule. Any constraints contained in the
trim rule are recalculated and vehicle data is set
accordingly.

Figure 3 Trim UML Sequence Diagram

Aircraft TrimVehicle Trim Rule

makeRules()
selectRules()

solve()

Aircraft Trim Rule

calculateTrimVariables()

calculateTrimVariables()

updateStates()

updateStates()

analogTrim()

calculateTrimVariables()

calculateTrimVariables()

calculateNewStates()

calculateNewStates()

updateStates()

updateStates()

updateValues()

Loop until a
solution is
found, trim
mode is
exited, or
an error
condition is
found

defineNameAndUnitLists()

checkForConflictingRules()

vehicleEOM()

Rule Setup

Begin
Solution
Process

updateValues()

American Institute of Aeronautics and Astronautics

6

Aircraft Trim Rule Methods
The AircraftTrimRule class does not add any additional
methods to the TrimRule class. The only change is in
the call to the constructor. When constructed, an
aircraft trim rule object uses an aircraft object and an
aircraft trim object argument, as opposed to a vehicle
object and a trim object used by the TrimRule class.

calculateTrimVariables
The calculateTrimVariables method updates the trim
states, errors, and gains for each aircraft trim rule
selected. The states are gathered from current aircraft
or vehicle data. The errors are computed based on the
deviation of aircraft data from their corresponding
target values. Gains are updated from the associated
aircraft trim object.

updateStates
This method updates aircraft data based on trim states.
Any constraints contained in each aircraft trim rule are
recalculated and set in the aircraft.

Vehicle Methods
vehicleEOM

Several processes take place when the equations of
motion of a vehicle are updated. These include
processing cockpit inputs, recalculation of derived data,
calculation of accelerations, and updating vehicle
systems. The equations of motion are also updated
each iteration while the simulation is running. During
trim, a vehicle does not integrate any accelerations to
determine the new set of vehicle data. The new vehicle
data are determined by the trim rules.

Processing cockpit inputs updates the values of the
cockpit inputs into the vehicle. In trim, however,
cockpit inputs are typically overridden by internal trim
variables.

Derived data are recalculated to make sure the vehicle
has a consistent set of states. For example, making sure
angle of attack (α), pitch (θ), and flight path angle (γ)
are consistent for aircraft.

Accelerations are calculated from the vehicle data. The
accelerations of interest to trim are typically body axis
translational and angular accelerations.

The vehicle systems are updated so that any data in the
systems are consistent with the current frame. Vehicle
system updates can occur after the derived data
calculations or after the acceleration calculations,

depending on the nature of the individual vehicle
system. Some examples of vehicle systems include fuel
systems, control systems, and propulsion systems.

Aircraft Methods
The differences between the Vehicle and Aircraft
classes exist in methods called by the VehicleEOM
method. The Aircraft class overloads the methods
called by VehicleEOM, so that aircraft trim control
variables can be properly mapped to the aircraft
cockpit. For the four control variables used by aircraft
trim (see AircraftTrim Class), each aircraft individually
determines which trim control states override which
cockpit inputs or other aircraft data. Aircraft also have
additional derived data, which are calculated.

Filters and Integrators

Filters and integrators require special attention when
trimming vehicles. It is desirable, during trim, for
filters to respond with their steady state outputs. Two
different behaviors for integrators are used in trim. In
the LaSRS++ framework, every filter and integrand
knows the current mode of the simulation.

When the simulation is in trim mode, filters set their
outputs to their steady state output values, t = ∞ (s = 0
in the Laplace domain). In this way, all internal
derivatives of the filter are zero, such that, when the
vehicle switches from trim to operate mode, there are
no undesired transients.

Integrators can behave in two different manners during
trim. If an integrator has a known initial value and
derivative, the integrator can be held at the initial value
and derivative. An example of this would be a mass
integrator for burning fuel. The initial fuel amount is
specified, and the initial burn rate can be directly
computed from the throttle settings of the engines. If
allowed to integrate during trim, the vehicle would burn
fuel before it ever went into operate.

The second type of behavior is for integrators that must
have derivatives equal to zero, or some other known
value, but whose initial value is not known. In this

Figure 4 Pitch Loop Integrator

American Institute of Aeronautics and Astronautics

7

case, a trim rule must be added to monitor the
integrators derivative until the target value is reached.
An example of this is a pitch loop integrator is shown in
Figure 4.

Earth Models
The LaSRS++ framework has three different earth
models, flat, round, and ellipsoidal. The earth can also
be rotated for the round and ellipsoidal models. Since
non-flat earth models can be used, the assumption that
trimming ailerons and elevator positions to zero will
make the roll and pitch rates zero is invalid. Depending
on the location of the vehicle relative to the world and
the heading, small elevator, aileron, and rudder inputs
may be needed to zero out pitch, roll, and yaw
accelerations relative to the earth’s surface, due to the
curvature and rotation of the earth.

Results
This run was conducted at an altitude of 10,000 feet,
target Mach number of 0.5, in a coordinated turn at a 10
degree bank angle, with a target ground track of 45.0
degrees. A rotating ellipsoidal earth model with inverse
radius squared gravity was used. The aircraft trim rules
used were Velocity Mach, Pitch Rate, Flight Path,
Alpha Trim, Coordinated Turn, and Lateral Surfaces.
The error tolerance was set to 1E-10 and took 900
iterations to find a solution. The resulting aircraft states
are listed in Table 1. Plots of interesting trim states and
errors vs. iteration can be found at then end of this
paper.

Velocity Mach
The Velocity Mach rule adjusts Vtotal until the target
Mach number (0.5) is reached. This rule makes sure
the Mach number specified is correct during trim, even
if another rule trims the altitude.

Alpha Trim
The Alpha Trim rule adjusts the angle of attack until the
body-Z axis acceleration is zero.

Flight Path
The Flight Path rule is responsible for setting up the
throttle and the pitch angle of the aircraft. The throttle
is adjusted until the body-x axis acceleration is zero.
The pitch angle is adjusted until the specified flight
path angle (0.0) is reached.

Coordinated Turn
The Coordinated Turn rule trims the aircraft into a
steady turn, v dot equal to zero. This is accomplished

by adjusting the sideslip until the body sideward
acceleration, v dot, reaches zero. The yaw angle is
trimmed until the desired ground track angle (45.0
degrees) is reached. The bank angle is set to the
specified bank angle (10.0 degrees).

Lateral Surfaces
The Lateral Surfaces rule adjusts the aileron_at_trim
and rudder_at_trim values to zero out the body roll and
yaw accelerations respectively.

Pitch Rate
The Pitch Rate rule adjusts the elevator_at_trim until
the body pitch acceleration is zero.

Table 1 Trim Results

h Altitude 10,000 ft
M Mach 0.5
Vt Vtotal 538.70 ft/sec
IAS Indicated Airspeed 276.85 knots
qbar Dynamic Pressure 254.73 psf
α Angle of Attack 5.0818 degrees
β Sideslip -0.25069 degrees
hdot Altitude rate 7.47e-12 ft/sec
u Body-X velocity 536.58 ft/sec
v Body-Y velocity -2.3570 ft/sec
w Body-Z velocity 47.717 ft/sec
p Body roll rate -0.0518 deg/sec
q Body pitch rate 0.1021 deg/sec
r Body yaw rate 0.5875 deg/sec
φ Roll 10.0 degrees
θ Pitch 4.9617 degrees
ψ Yaw 46.128 degrees
pdot Body roll acceleration 6.70e-12 deg/sec^2
qdot Body pitch acceleration -6.65e-10 deg/sec^2
rdot Body yaw acceleration 6.70e-11 deg/sec^2
udot Body X acceleration -1.39e-12 ft/sec^2
vdot Body Y acceleration -1.56e-11 ft/sec^2
wdot Body Z acceleration -2.45e-12 ft/sec^2
δa aileron_at_trim -0.4942 non-dim
δe elevator_at_trim -3.1240 non-dim
δr rudder_at_trim 1.2146 non-dim
δt throttle_at_trim 0.1426 non-dim

Conclusions

There are many advantages to using an object-oriented
trim design. In an object-oriented framework, a set of
generic trim rules can be developed that work on any
type of simulation object. For aircraft, generic aircraft
trim rules can be used. Any aircraft that derives from
the Aircraft class, 757, F-16, etc., can all use the same

American Institute of Aeronautics and Astronautics

8

rules for trimming a given condition. Through the
addition of a generic method (function) to check for
rule conflicts, complex sections of code to check for
specific rule conflicts are no longer needed and no
longer need to be maintained when a new rule is added.
The only vehicle specific code required is to map the
generic control variables into the correct cockpit input
on the vehicle.

References
1 Booch, Grady. Object-Oriented Analysis and Design
With Applications. The Benjamin/Cummings
Publishing Company, Inc., Redwood City, California,
1994.

2 Muller, Pierre-Alain. Instant UML. Wrox Press Ltd.
Chicago, Illinois, 1997.

3 Leslie, R.; Geyer D.; Cunningham, K.; Madden, M.;
Kenney, P.; Glaab, P. LaSRS++: An Object-Oriented
Framework for Real-Time Simulation of Aircraft.
AIAA 98-4529, Modeling and Simulation Technology
Conference, Boston, MA, August 1998.

American Institute of Aeronautics and Astronautics

9

American Institute of Aeronautics and Astronautics

10

American Institute of Aeronautics and Astronautics

11

Aircraft Trim Rules
All of the following rules derive from the AircraftTrimRule class. See Table 1 for symbol definitions.
Notation: θ,δt = target – indicates Pitch and throttle_at_trim are set to target values.

Velocity Rules State Error Constraints
Velocity Drag Vtotal u dot
Velocity Mach Vtotal mach
Velocity Speed Vtotal speed
Velocity Alpha Vtotal w dot

 Alpha Rules State Error Constraints
Alpha Trim α w dot
Constant Alpha α = target
Loaded Loop α Nz q = f(w dot world relative , u air relative)

Longitudinal Rules State Error Constraints
Constant Pitch δt u dot θ = target
Constant Pitch/ Constant Thrust θ,δt = target
Constant Thrust θ Vtotal dot δt = target
Constant Thrust, Pitch θ w dot δt = target
Constant Thrust, Rate of Climb θ h dot δt = target

δt u dot Flight Path
 θ γ

θ w dot Pitch Thrust
 δt u dot

δt u dot Rate of Climb
 γ h dot

Lateral Rules State Error Constraints
ψ track β = f(u, φ, Vtotal) Bank into Wind

 φ v dot
ψ track φ = target Coordinated Turn

 β v dot φ,θ,ψ dot = f(g, θ, φ, u, w)
ψ track Crab into Wind

 β v dot
ψ track φ,θ,ψ dot = f(g, θ, φ, u, w)
β v dot

Loaded Roll

 φ u dot

 ψ = target No Lateral Motion
 δa, δr, φ, φ dot , θ dot , ψ dot = 0

φ track One Engine Out
 β v dot

ψ track β = target Steady Side Slip
 φ v dot

 Other Rules State Error Constraints
h vertical acceleration δt = target
θ q dot
φ p dot

Ground Trim

 ψ track error

δa p dot Lateral Surfaces
 δr r dot
Pitch Rate δe q dot

	Abstract*
	Introduction
	Object-Oriented Design
	LaSRS++ Trim Classes
	Vehicle Class
	Aircraft Class
	TrimRule Class
	AircraftTrimRule Class
	Trim Class
	AircraftTrim Class

	Trim Algorithm
	Rule Setup
	Trim Loop

	Methods
	Trim Methods
	makeRules
	selectRules
	defineNameAndUnitLists
	checkForConflictingRules
	solve
	updateValues
	analogTrim

	Aircraft Trim Methods
	selectRules

	Trim Rule Methods
	calculateTrimVariables
	calculateNewStates
	updateStates

	Aircraft Trim Rule Methods
	calculateTrimVariables
	updateStates

	Vehicle Methods
	vehicleEOM

	Aircraft Methods

	Filters and Integrators
	Earth Models
	Results
	Velocity Mach
	Alpha Trim
	Flight Path
	Coordinated Turn
	Lateral Surfaces
	Pitch Rate

	Conclusions
	References
	Aircraft Trim Rules

